

ISSN (E): 2708-2601
ISSN (P): 2708-2598

Medical Journal of South Punjab
Article DOI:10.61581/MJSP.VOL06/02/08

Volume 6, Issue 2, 2025

Comparison of Calcium Carbonate versus calcium acetate in Chronic Kidney Disease (CKD) 5 patients

Publication History

Received: Feb 27, 2025 Revised: March 20, 2025
Accepted: April 01, 2025 Published: June 30, 2025

Authors and Affiliation:

Sonia Maqbool¹, Mohsin Raza²

¹Sheikh Zayed Hospital Rahim Yar Khan,

Pakistan,

²Nishtar Hospital, Multan, Pakistan.

*Corresponding Author Email:

soniamaqbool1635@gmail.com

Copyright & Licensing:

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a [Creative Commons Attribution \(CC-BY\) 4.0 License](#) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.

Conflict of Interest:

Author(s) declared no conflict of interest.

Acknowledgment:

No Funding received.

Citation: Maqbool S, Raza M. Comparison of Calcium Carbonate versus calcium acetate in Chronic Kidney Disease (CKD) 5 patients. Medical Journal of South Punjab. 2025 June 30; 6(2):55-61.

Please scan me to access online.

An official publication of

Medteach Private Limited, Multan, Pakistan.

Email: farman@mjsp.com.pk, Website: <https://mjsp.com.pk/index.php/mjsp>

Comparison of Calcium Carbonate versus calcium acetate in Chronic Kidney Disease (CKD) 5 patients

Sonia Maqbool¹, Mohsin Raza²

¹Sheikh Zayed Hospital Rahim Yar Khan, Pakistan,

²Nishtar Hospital, Multan, Pakistan.

*Corresponding Author Email: soniamaqbool635@gmail.com

ABSTRACT

Objective: To compare the phosphate binding power and hypercalcaemic effect of calcium acetate and calcium carbonate in chronic kidney disease stage 5 patients.

Methods: The study was conducted in the Department of Nephrology at Shaikh Zayed Complex/DHQ Hospital Rahim Yar Khan, after approval from The College of Physicians and Surgeons of Pakistan. Informed written consent was obtained from all participants after full disclosure. Patients were randomized into groups A and B using the lottery method. Group A received CaAc, while group B received CaCo₃. The study had four phases. In phase 1, both groups underwent a two-week washout, stopping phosphate binders. Baseline tests followed. In phase 2, group A received 4.002 g/day of CaAc (1.014 g elemental calcium), while group B took 5.625 g/day of CaCo₃ (2.25 g elemental calcium) for four weeks. Phase 3 ended with another two-week washout without phosphate binders.

Results: The mean serum urea of Group A and Group B was 27.44±2.19 mg/dl and 29.36±3.19 mg/dl, respectively. (p=0.008). The mean serum creatinine of Group A and Group B was 1046.11±120.95 mg/dl and 1104.76±116.52 mg/dl, respectively. The mean serum albumin of Group A and Group B was 39.32±4.78 g/l and 30.66±5.45 g/l, respectively. The mean final serum calcium level of Group A and Group B was 2.48±0.52 mmol/L and 2.53±0.18 mmol/L, respectively. The mean final serum PO₄ level of Group A and Group B was 1.72±0.43 mmol/L and 1.82±0.50 mmol/L, respectively.

Conclusion: Patients undergoing maintenance hemodialysis experience comparable serum phosphate level reductions from calcium acetate and calcium carbonate treatments. Calcium acetate results in fewer cases of hypercalcemia while maintaining similar drug tolerance compared to calcium carbonate.

Keywords: Hyperphosphatemia, Calcium Acetate, Chronic Kidney Disease, Calcium Carbonate

1. INTRODUCTION

Chronic Kidney Disease (CKD) stands as an essential public health issue globally since it impacts about 13.4% of people around the world, which translates to roughly 843.6 million affected individuals. The occurrence of CKD in Pakistan displays a wide range from 12.5% to 29.9%, according to various research studies. Research findings show that 12.86 million Pakistanis above thirty years old suffer from renal impairment, which shows the significant disease burden Pakistan faces.

Patients with CKD stage 5 frequently develop hyperphosphatemia because their kidneys are unable to excrete phosphate properly. High serum phosphate concentrations cause secondary hyperparathyroidism together with vascular calcification, which results in higher rates of disease and death. Patient populations must manage hyperphosphatemia effectively to reduce associated risks. Physicians often prescribe calcium-based phosphate binders, calcium carbonate and calcium acetate, to manage serum phosphate levels in patients with CKD. The agents work within the gastrointestinal tract to connect with dietary phosphate and prevent absorption. The differences in efficacy and safety profiles between these binders require comparative analysis to establish the best therapeutic approaches.

Multiple investigations have assessed the performance of calcium acetate compared to calcium carbonate for treating hyperphosphatemia. The meta-analysis results demonstrate that calcium acetate performs equally well as calcium carbonate in reducing serum phosphate levels among chronic dialysis patients. Calcium acetate exhibits improved solubility under acidic and alkaline pH conditions, which may lead to a better phosphate-binding ability.

Even though study findings exist, calcium-based binders maintain issues related to hypercalcemia and gastrointestinal intolerance. Calcium acetate treatment shows a higher incidence of hypercalcemia episodes. A thorough evaluation of calcium carbonate versus calcium acetate is crucial for assessing their effectiveness and safety in treating hyperphosphatemia in CKD stage 5 patients.

2. METHODOLOGY

Study was conducted at Department of Nephrology at Shaikh Zayed Complex/DHQ Hospital Rahim Yar Khan, after permission from The College of Physicians and Surgeons of Pakistan. Study was conducted after six months of synopsis approval from 21st August 2024 to 20th February 2025. We obtained informed written consent from all study participants following thorough information disclosure about the research. The lottery method was used to randomize patients into A and B groups. The researchers administered CaAc to group A and gave group B CaCo3 for treatment. The study was conducted in four phases. During phase 1, both groups entered a two-week washout period, during which they stopped using phosphate binders. Baseline tests were performed following this period. Group A began receiving 4.002 g/day of CaAc containing 1.014 g elemental calcium in phase 2, while group B started on 5.625 g/day of CaCo3 with 2.25 g elemental calcium for four weeks. No phosphate binders were administered during the two-week washout following phase 3. The crossover design in phase 4 resulted in group A receiving CaCo3, while group B received CaAc for an additional four weeks. The study required patients to consume their prescribed medications during meals. Throughout the study, researchers measured urea, creatinine, calcium, albumin, and phosphate serum levels during each phase and documented the results using a predesigned proforma.

The participants for the study were patients suffering from Chronic Kidney Disease (CKD) 5 and were aged between 20 and 60 of both genders. Patients with CKD stage I to IV, those with previous parathyroidectomy, and advanced malignancy or sitting metastasis were excluded from the study. There was no systematic sampling; a non-probability technique was employed. Using an online sample size calculator, the sample size was set at 50 owing to the 95% confidence level and 80% study power. Previous results indicate those taking CaCo3 had serum calcium levels at 2.73 ± 0.67 mmol/L, while those on CaAc were at 2.32 ± 0.28 mmol/L. The sample was divided evenly into two groups, with 25 patients in each group.

This study sought to assess the effectiveness of calcium acetate (CaAc) versus calcium carbonate (CaCo3) in patients with chronic kidney disease stage 5 (CKD 5), with an estimated glomerular filtration rate (72) eGFR < 15 mL/min/1.73 m² for greater than three months and not on kidney replacement therapy. Effectiveness was evaluated in terms of phosphate-binding power as well as hypercalcemic impact. Bound power was defined as the capacity to keep serum phosphate at a normal level between 3.4 and 4.5 mg/dL. In comparison, a hypercalcemic effect was characterised by increased serum calcium levels over the standard mark of 10 mg/dL. It was believed that calcium acetate would result in a lower incidence of hypercalcemia than calcium carbonate while having the same level of phosphate-binding power.

Analysis of the data was done using SPSS software version 24. Mean and standard deviation were established for the numerical variables of age, duration of dialysis, and level of CaAc, CaCo3, phosphate, and albumin. Proportional frequency and percentages were established for the categorical variables of sex and treatment groups. Possible confounding and effect-modifying factors such as age, sex, and

duration of dialysis were controlled for by stratification. A post-stratification t-test was performed for numerical variables, while qualitative variables compared using chi square test with significant p-value of ≤ 0.05 .

3. RESULTS

A total of 60 patients were included in our study, with 30 patients (50.0%) in Group A (CaAc) and 30 patients (50.0%) in Group B (CaCo2). The mean age of patients in Group CaAc was 42.10 ± 6.87 years, while in Group CaCo2, it was 41.03 ± 5.77 years ($p=0.518$). In Group CaAc, there were 19 males (63.3%) and 11 females (36.7%), whereas Group B had 21 males (70.0%) and 9 females (30.0%). The mean duration of dialysis was 31.93 ± 8.48 months in Group CaAc and 32.13 ± 6.04 months in Group CaCo2, ($p=0.917$).

The mean serum calcium levels in Group CaAc and Group CaCo2 were 2.74 ± 0.85 mmol/L and 2.73 ± 0.46 mmol/L, respectively ($p=0.985$). The mean serum phosphate (PO₄) levels were 1.47 ± 0.32 mg/dL in Group CaAc and 1.69 ± 0.51 mg/dL in Group CaCo2, showing a borderline difference ($p=0.051$). The mean serum urea levels were significantly different, with Group CaAc at 27.44 ± 2.19 mg/dL and Group CaCo2 at 29.36 ± 3.19 mg/dL ($p=0.008$). The mean serum creatinine levels were 1046.11 ± 120.95 mg/dL in Group CaAc and 1104.76 ± 116.52 mg/dL in Group CaCo2, ($p=0.061$). However, the mean serum albumin levels were significantly lower in Group CaCo2 (30.66 ± 5.45 g/L) compared to Group CaAc (39.32 ± 4.78 g/L).

At the final assessment, the mean serum calcium levels were 2.48 ± 0.52 mmol/L in Group CaAc and 2.53 ± 0.18 mmol/L in Group CaCo2 ($p=0.642$). Similarly, the mean final serum phosphate levels were 1.72 ± 0.43 mmol/L in Group CaAc and 1.82 ± 0.50 mmol/L in Group CaCo2, ($p=0.408$).

Table:I
Demographics profile of the study groups

Variable	Group A (CaAc)	Group B (CaCo3)	p- value
Age (years)	42.10±6.87	41.03±5.77	0.518
Gender			
Male	19 (63.3)	21 (70.0)	0.584
Female	11 (36.7)	9 (30.0)	
Duration of dialysis (months)	31.93±8.48	32.13±6.04	0.917

N (%)chi-square test was applied, Mean±S.D independent samples t test was applied.

Table: II
Comparison of post- crossover stage of the study groups

Variable	Group A (CaAc)	Group B (CaCo3)	p- value
Serum Calcium (mmol/l)	2.74±0.85	2.73±0.46	0.985
Serum PO4 (mg/dl)	1.47±0.32	1.69±0.51	0.051
Serum urea (mg/dl)	27.44±2.19	29.36±3.19	0.008
Serum creatinine (mg/dl)	1046.11±120.95	1104.76±116.52	0.061
Serum albumin (g/l)	39.32±4.78	30.66±5.45	<0.001

Mean±S.D, independent samples t test was applied.

Table: III
Comparison of outcomes of the study groups

outcome	Group A (CaAc)	Group B (CaCo3)	p- value
Final serum calcium level (mmol/L)	2.48±0.52	2.53±0.18	0.642
Final serum PO4 level (mmol/L)	1.72±0.43	1.82±0.50	0.408

Mean±S.D, independent samples t test was applied.

4. DISCUSSION

Calcium acetate (CaAc) is generally considered to be better tolerated than calcium carbonate (CaCO₃), as it has a lower

risk of causing gastrointestinal discomfort and other adverse effects. Additionally, calcium acetate exhibits superior phosphate-binding efficacy, particularly in patients with chronic kidney disease, as it binds dietary phosphate more effectively even at lower doses¹¹. This enhanced phosphate-binding capacity helps in better management of hyperphosphatemia. Furthermore, calcium acetate is associated with a lower incidence of hypercalcemia compared to calcium carbonate, likely due to its improved solubility and bioavailability, which result in a more controlled release of calcium into the bloodstream, thereby reducing the likelihood of excessive serum calcium levels¹².

A statistically significant increase in calcium (Ca) levels was observed in patients while they were taking calcium carbonate (CaCO₃). However, international studies conducted by Ben et al¹³ and Moniere et al¹⁴ contradicted the notion that calcium acetate (CaAc) has a lesser hypercalcemic effect, suggesting that its impact on serum calcium levels may not be significantly different from that of calcium carbonate.

A prospective double-blind crossover comparison conducted by Ring et al¹⁵ suggests a higher frequency of hypercalcemia with the use of calcium acetate (CaAc). However, certain differences in the study design may account for the observed discrepancies. These differences could include variations in patient selection criteria, dosing regimens, duration of treatment, or methods used to assess and monitor calcium levels. Additionally, differences in baseline characteristics of the study population or variations in concomitant medications and dietary calcium intake might have influenced the outcomes.

Similarly, a study conducted by Saif et al¹⁶ concluded that while both calcium acetate and calcium carbonate have a comparable effect in lowering serum

phosphate levels, calcium carbonate has a higher propensity to cause hypercalcemia than calcium acetate. Additionally, research conducted by Naghibi et al¹⁷ on the Iranian population reported that calcium acetate is a more effective phosphate binder than calcium carbonate, further supporting its potential advantages in managing hyperphosphatemia.

A study conducted by Phelps et al¹⁸ reported that serum phosphate levels were lower following treatment with calcium acetate compared to calcium carbonate. Additionally, the calcium-phosphorus (Ca × P) product and parathyroid hormone (PTH) levels were significantly reduced after treatment with calcium acetate, indicating its potential benefits in managing mineral metabolism. Similarly, research conducted by Wang et al¹⁹ suggested that calcium acetate is more effective in controlling hyperphosphatemia than calcium carbonate, further supporting its clinical utility in patients requiring phosphate regulation.

Calcium acetate is highly soluble in both acidic and alkaline pH, making it an effective phosphate binder. It contains about 25% elemental calcium, whereas calcium carbonate has 40%. This means one gram of calcium acetate provides more available calcium than calcium carbonate²⁰.

5. CONCLUSION

Patients undergoing maintenance hemodialysis experience comparable serum phosphate level reductions from calcium acetate and calcium carbonate treatments. Calcium acetate results in fewer cases of hypercalcemia while maintaining similar drug tolerance compared to calcium carbonate.

6. REFERENCES

1. Tahir T, Raja KM, Azam MN, Butt B, Mir AW, Ahmed N. Is Sevelamer Carbonate Better Than Calcium

Acetate in Controlling Chronic Kidney Disease-Mineral Bone Disease in Dialysis Patients. *Pakistan Armed Forces Medical Journal*. 2022 Sep 7;72(4):1383-87.

2. Floege J. Phosphate binders in chronic kidney disease: an updated narrative review of recent data. *Journal of Nephrology*. 2020 Jun;33:497-508.
3. Zhang P, Sang S, Huang J, Feng S, Feng C, Wang R. Effect of calcium-based phosphate binders versus sevelamer on mortality of patients with hemodialysis: a meta-analysis. *Iranian Journal of Kidney Diseases*. 2022 Jul 1;16(4):215.
4. Jovanovich A. Time to reconsider calcium-based phosphate binders in dialysis? A call for a well-designed randomized controlled trial. *American Journal of Kidney Diseases*. 2020 Mar 1;75(3):453-5.
5. Ogata H, Fukagawa M, Hirakata H, Kagimura T, Fukushima M, Akizawa T et al. Effect of treating hyperphosphatemia with lanthanum carbonate vs calcium carbonate on cardiovascular events in patients with chronic kidney disease undergoing hemodialysis: the LANDMARK randomized clinical trial. *Jama*. 2021 May 18;325(19):1946-54.
6. Abdu A, Abdu A, Arogundade FA. Prevalence and pattern of chronic kidney disease-mineral bone disorders among hemodialysis patients in kano, northwest nigeria. *Annals of African Medicine*. 2019 Oct;18(4):191.
7. Malluche HH, Mawad H. Management of hyperphosphatemia of chronic kidney disease: lessons from the past and future directions. *Nephrol Dial Transplant* 2002;17:1170-5.
8. Kestenbaum R, Sampson JN, Rudser KD, Patterson DJ, Seliger SL, Young B, et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. *J Am Soc*

Nephrol 2005;16:520–8.

9. d'Almeida Filho EJ, Cruz ED, Hoette M, Ruzany F, Keen LN, Lugon JR. Calcium acetate versus calcium carbonate in the control of hyperphosphatemia in hemodialysis patients. *Sao Paulo Medical Journal*. 2000;118:179-84.

10. Mason DL, Godugu K, Nnani D, Mousa SA. Effects of sevelamer carbonate versus calcium acetate on vascular calcification, inflammation, and endothelial dysfunction in chronic kidney disease. *Clinical and Translational Science*. 2022 Feb;15(2):353-60.

11. Wang Y, Xie G, Huang Y, Zhang H, Yang B, Mao Z. Calcium acetate or calcium carbonate for hyperphosphatemia of hemodialysis patients: a meta-analysis. *PLoS One*. 2015 Mar 23;10(3):e0121376.

12. Gulati A, Sridhar V, Bose T, Hari P, Bagga A. Short-term efficacy of sevelamer versus calcium acetate in patients with chronic kidney disease stage 3–4. *International urology and nephrology*. 2010 Dec;42:1055-62.

13. Ben Hamida F, El Esper I, Compagnon M, Moniere P, Fournier A. Long term crossover comparison of calcium carbonate as phosphorous binder. *Nephron* 1993;63:258–62.

14. Moniere P, Djerad M, Boudailliez B, el Esper N, Boitte F, Westeel PF et al. Control of predialytic hyperphosphatemia by oral calcium acetate and calcium carbonate.

Nephron 1992;60:6–11.

15. Ring I, Nielsen C, Andersen SP, Behreness JK, Sodemann B, Korneup HJ. Calcium acetate versus calcium carbonate as phosphorous binder in patients on chronic hemodialysis: a controlled study. *Nephrol Dial Transplant* 1993;8:341–6.

16. Saif I, Halim A, Altaf A, Saif M, Khalid M, Ahmad D et al. Comparison of calcium acetate with calcium carbonate as phosphate binder in patients on maintenance haemodialysis. *J Ayub Med Coll Abbottabad*. 2007;19(4):26-8.

17. Naghibi M, Nazemian F, Rajabi O, Hami M. Comparison of phosphate lowering properties of calcium acetate and calcium carbonate in hemodialysis. *Int J Transplant* 2006;5(1):73–6.

18. Phelps KR, Stern M, Slingerland A, Heravi M, Strogaz D, Haqqie S. Metabolic and skeletal effects of low and high doses of calcium acetate in patients with preterminal chronic renal failure. *Am J Nephrol* 2002;22(5-6):445-54.

19. Wang Y, Xie G, Huang Y, Zhang H, Yang B, Mao Z. Calcium acetate or calcium carbonate for hyperphosphatemia of hemodialysis patients: a meta-analysis. *PLoS One* 2015;10(3):e0121376.

20. Emmett M. A comparison of calcium-based phosphorus binders for patients with chronic kidney disease. *Dialysis Transplantation* 2006;35(5):284-93.